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Spectral Representation of Self-Adjoint
Problems for Layered Anisotropic

Waveguides
Carlos R. paiva and Afonso M. Barbosa, Associate Member, IEEE

Abstract —Layered waveguides with Iossless anisotropic layers in the
polar configuration are analyzed through the unifying concept of a real
self-adjoint operator. For a suitable definition of two-vector transverse
eigenfunctions, general properties such as orthogonality and complete-
ness relations are derived. The linear operator formalism is applied to
closed waveguides inhomogeneously filled with auisotropic materials,
inclnding crystals and gyrotropic media. As an extension of the former
theory to open wavegnides, a grounded uniaxial dielectric slab with a
coplanar optic axis is also analyzed as for open isotropic waveguides, a
complete spectral representation inclnding the surface (proper eigen-
functions) as well as the pseudosnrface modes (improper eigenfunc-
tious) is presented.

I. INTRODUCTION

T HE increasing use of anisotropic materials in applica-
tions ranging from microwaves and millimeter waves to

optical frequencies has prompted the study of electromag-
netic wave propagation in anisotropic media, particularly in
connection with integrated circuits.

Several techniques have been developed to analyze lay-
ered anisotropic structures with direct application to optics
and millimeter waves or as constituent parts of more com-
plex structures in a building-block approach. Among the
available techniques, the 4 x 4 matrix formalism appears to
be especially well suited to handle general multilayered
anisotropic or even bianisotropic media (e.g., [1]–[3]). How-
ever, very few fully analytical methods have been developed
to study these problems: only for some anisotropic configura-
tions is the analytical complexity not prohibitive (e.g., [4]-[7]),
avoiding cumbersome calculations and lengthy expressions.

In a building-block approach it is necessary to describe the
field components in each subregion in terms of a complete
set of transverse mode functions. For isotropic dielectric
structures the electromagnetic characterization of each sub-
region may be reduced to Sturm–Liou~ille systems [8]. How-
ever, when general anisotropic media have to be considered,
the application of well-known results from the spectral the-
ory of linear operators is usually required [9], [10].

Based on a self-adjoint operator formalism, a general
analysis of closed multilayered waveguides containing gyro-
magnetic layers with polar configuration [4] has been pre-
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sented by Mrozowski and Mazur [11]. For a suitable defini-
tion of two-vector transverse mode functions they have de-
rived orthogonality and completeness relations. However, a
similar linear-operator formalism suitable for dielectric pla-
nar waveguides containing uniaxial layers with coupled mode
configurations has never been presented as far as the authors
are aware.

In this paper, also based on a self-adjoint operator formal-
ism, a general framework for the analysis of closed multilay-
ered waveguides containing anisotropic layers with polar
configuration is presented. Although the theoretical back-
ground of this framework is similar to [11], it is applicable to
a more general class of anisotropic materials which includes
crystals and gyrotropic (gyromagnetic or gyroelectric) media.

The previous linear operator formalism for closed wave-
guides is extended to open layered anisotropic waveguides
where a complete spectral representation has to consider the
surface and the pseudosurface modes [12]: taking into con-
sideration a theorem related to the orthogonality of im-
proper eigenfunctions of a linear operator by means of a
perturbation approach [101, [13], a general analysis of a
grounded uniaxial dielectric slab waveguide with a coplanar
optical axis (polar configuration) is presented. Therefore,
orthogonality relations for the surface (proper eigenfunc-
tions) and pseudosurface modes (improper eigenfunctions)
as well as a completeness relation for the spectral repre-
sentation of the hybrid modes of this open anisotropic
waveguide are presented for, to the best of the authors’
knowledge, the first time. One should finally note that this
analytical formulation is particularly relevant to the analysis
of step discontinuities on uniaxial dielectric planar wave-
guides used in millimeter-wave and optical integrated cir-
cuits.

11. EIGENVALUE PROBLEMS FOR CLOSED WAVEGUIDES

In this section, the general layered waveguide depicted in
Fig. 1 will be analyzed. It is uniform in the y direction and is
inhomogeneously filled with a spatially nondispersive, loss-
less, anisotropic medium. The waveguide is closed by electric
and/or magnetic walls placed at x = O and x = d.

Time-harmonic variation of the form exp ( jot) will be
considered. Hence, Maxwell’s curl equations for source-free
regions in the frequency domain are (boldface letters denot-
ing vectors and boldface letters with an overbar denoting

0018-9480/91 /0200-0330$01 .00 01991 IEEE



PAIVAAND BARBOSA.SPECTRALREPRESENTATIONOF SELF-ADJOINTPROBLEMS 331

x
t
I

0
0

0

Fig. 1. Multilayered waveguide closed by electric and/or magnetic
walls placed at x = Oand .x= d. In general, E and jI are piecewise-con-
tinuous functions of x for x = [0,d].

matrices and tensors)

VXH=jcoD

VXE=–jmB. (1)

Moreover, as z is the longitudinal direction and, since the
structure is longitudinally uniform, the constitutive relations
in the frequency domain are of the form

D(ro, x,z)=eo2(o, x)” E(o, x,z)

B(aJ, x,z)=#o~(@, x)” H(co, x,z) (2)

where ~ and ~ are, respectively, the relative dielectric per-
mittivity and relative magnetic permeability tensors, which
are considered piecewise-continuous functions of x for O<
x < d. As the medium is cold, i.e., spatially nondispersive,
the constitutive relations are local.

Introducing normalized distances (e.g., x’= kOx, z’= kOz)
as well as a normalized magnetic field,

2 = ZOH (3)

with ZO = kO/(060) = (op O)/kO, then from (l)-(3) one ob-
tains

[

ii(co, x’) 1“[1[1jV’XZ E O— (4)
–jV’XZ ji.(a,.x’) % – O

where ~ is the unit dyadic, i.e., I = M + j$ + 22
Electromagnetic fields have a z’ dependence, exp ( – jpz’),

with

~=:
o

where k is the longitudinal wavenumber.
V = kOV’with

V= axtt - jpt

and

(5)

Therefore, one has

(6)

‘V’X’=F: :] ‘7)

as ~/d y = O since the waveguide is uniform in the y direc-
tion. The symbol dX,stands for d/ dx’. Henceforth the factor
exp [j(o t – ~z’)] will be omitted.

In this paper, only the polar configuration will be consid-
ered; i.e., G and F have the following matrix representation
[4]:

“E:: :~ ‘=F i: ii(’)

in the (x, y, z) frame of Fig. 1. As the medium is lossless, Z
and ~ must be Hermitian [14], i.e.,

~+=~ ~+=~ (9)

where the superscript + means tranjugate or Hermitian
conjugate.

In everything that follows, two kinds of lossless anisotropic
materials will be considered: (i) crystals and (ii) gyrotropic
media.

Cvstals; If one disregards optical activity as well as the
Faraday effect [15] Z, as well as E for the general case of
magnetic crystals, is real, symmetric, and positive-definite
[14]. Hence, all elements in (8) are positive and

~T=~ ~T+ (lo)

where the superscript T means transpose.
Gyrotropic Media: For a gyrotropic medium, one has from

the Onsager relations [16] and for the polar configuration,

●zY= —~Y= P:y = –Pyz (11)

since the applied magnetic field is aligned with the x axis.
Hence, the off-diagonal elements in (8) must be imaginary,
according to (9) and (11), while the diagonal elements are
real. Therefore, for a gyrotropic medium, (8) may also be
written in the form

‘=l {.x’l ‘=1’ :L ::1
(12)

where eyy = ●ZZ and PYY= p== since : and F must be
rotationally symmetric about x (the direction of the applied
field).

After substituting (7) and (8) into (4), one obtains the two
following coupled differential equations for E} and %Y:

where.

Vl(x’) P’ ~
L3xlql(x’) + —

E,2(X’) = /-Ltx(x’) y

U2(X’) P’ ~
L!@(x’) + — = — (13)

Mzz(x’) ●xx(x’) y

q~(x’) = ~ [dlEy + jwz,(x’)%]
W=,(x’)

Vl(x’) = A~lV(x’)EY ‘j6y, (X’)dx,%y

e .:X’) [a.v’%y- ‘e:y(x’)~y]
772(X’) = —

z.

V2(X’) = A;X(x’)&Y + jwyZ(x’)dX,Ey (14)
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and where

are the cofactors of ~XXand P..X, respectively, in (8).
The other field components may be expressed in terms of

Ey and 2P as follows:

@##
EX=—

6,.X(X’) y

&K=–
PE

Wz, (x’) y

Ez=– ~[~,y(~’)Ey+j%~]
.2

q.= A [jd,Ey - Pzy(xf)~]. (16)
wzs~’)

In order to write the coupled differential equations (13) as
an eigenvalue equation, one has to define a two-vector
eigenfunction for both crystals and gyrotropic media.

Ciystols: Introducing

CPI=-EY +2= Mf (17)

and the two-vector transverse mode function

aJ=[@l,&]T (18)

(13) and (14) may be recast in the form of an eigenvalue
equation:

where 7? is a real and symmetric “weight” operator given by

rl 1

~’ KPi) 0
1

(20)

o—
EKX(X’)

and where the eigenvalue

(21)

represents an effective dielectric permittivity corresponding
to the eigenfunction @. The linear operator > is the 2X 2
matrix differential operator

with

_zF12= – bl(x’)(?x! + (IJ22( X’)

Z721= Oxbl(x’) – b2(x’)i3xr

1
222 = ax<—---dX, + U2(X’).

e,:(i)

(22)

(23)

For magnetic crystals, one has

A;x A?,
~1=— ~2. —

.s=: Pzz

bl=~ bz=%.
Ezz w,.

(24)

Gyrotropic Media: For a gyrotropic medium, if one intro-
duces, instead of (17),

then (18)–(23) are still valid provided that

(26)

For gyromagnetic media, one has ~X= O and ell = ~ ~ = ●,;
then al= ~r(x’), bl -0, and the problem is reduced to the
one already treated by Mrozowski and Mazur in [11].

One should note that definitions (17) and (25) were chosen
in order to obtain real operator & for both cases.

The waveguide in Fig. 1 is closed at x = O and x = d by
electric or magnetic walls. Therefore, at x‘ = O, d’, the
boundary conditions, according to (16), are (i) EY = dX%y = O
for an electric wall and (ii) ~y = dX,Ey = O for a magnetic
wall. Hence, when the off-diagonal elements in (8) are null
for O< x < d, (19) yields two separate Sturm-Liouville sys-
tems [8], thus allowing the propagation of TE and TM
modes.

As @l and 42, defined in (17) or (25), have finite energy,
they belong to the complete vector space f20 of all real-val-
ued functions which are Lebesgue square integrable over

[O,d’], i.e., for O<X’< d’. The domain of operator 7Y,D(%J’),
will be the set of functions @ = [@l, @2]~ with @l, 42 ● ~0

such that, at x’= O, d’, (i) ~1 = dX@J= O for an electric wall
and (ii) 42 = dt,~ ~= O for a magnetic wall, Since all the
expressions to which operator dX, is applied have to be
continuous, the domain of ~ is D(~”) with D(>) C D(%)
such that

(a) 4,

(b) 42

(c)

(d)

are continuous on the interval [0, d’]. One can easily see that
the continuity of functions (a)–(d) is equivalent to the conti-
nuity of the field components that are perpendicular to the x
axis,

Introducing the following definition of inner product of
the two elements u = [ul, u2]~ and v = [LJI,u2]~ from D(z)
as

one can prove that ~ is self-a~joint since it is symmetric [13]
(Appendix I). Therefore, as & is real, the eigenvalues ●eti,l
are real and the eigenfunctions @~ can be chosen to be real
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[13]. Moreover, the follow&g orthogonality relation holds for
any @~ and cD. from D(&): z

With an appropriate normalization, one can write

(@m,x”@n)=amn (29)

where i3~. is the Kronecker delta. In fact, for m # n one has
●efi # ~effn as long as b I(x’) and bz(x’) in (23) are not
ide~tically null for O < x‘ < d’.

As the set of eigenfunctions {@.} span D(z) [13], then, if
@ = D(z),

A

e

Y

Fig. 2. Uniaxial polar orientation (C is the optical or crystal axis).
@ = ~ cYn@n (30)

~=1

with
From (35) and (37) one may write

an=(@n, ?7”@) (31)

according to (29). Hence, the following completeness relation
is also valid:

ll@l12=(@, 7*Q) = ~ a;. (32)
~=1

HI. HOMOGENEOUS LAYERS

In this section the special case of homogeneous layers will
be considered. In fact, they frequently appear as models for
constituent layers of multilayered structures used both in
closed and open waveguides.

Inside a layer where C and ~ do not depend on x’, one
may write, according to (18)-(23),

d:fcjl+ Pl@l = ~1’3##’2

(33)8342 + P242 = !12f%’4’l

with

+l=O.+%
42= t#x’4a + ‘$btdb (38)

where, for a layer with finite thickness,

+.= As[sin(h,x’) + X$cos(h,x’)] (39)

with s = a, b and where [$ are coupling coefficients. Accord-
ing to (33), these coupling coefficients are given by (s = a, b)

(40)

One should also note that if PI = Oor P2 = O(with bl # bz),
a slightly different analysis should be developed since (35) is
no longer valid (Appendix II).

Next, some examples of homogeneous layers with different
types of anisotropy will be considered.

If the layer is a cold magnetoplasma with the externally
applied constant magnetic field aligned with the x axis, then
~ = ~ and : is given by (12). Hence, (30 and & in (37) may
be written as

Po = :(ell – %ff)(ea – %ff)

()
Eeff

J72=c=Z a2–;
xx

()

p2=2E1– 1+: ~eff (41)

ql = pzz(bl – b2)
where ●s = (~~ – e~)/e ~.

qz= – cz. (bl – %). (34) Similarly, if the layer under consideration is a ferrite with

If bl = b2 then ql = q2 = O. Hence, according to (33), 41
and 42 remain uncoupled as in the isotropic case. Any case
in which bl = b2 will be disregarded in this paper.

From (33) and if PI, p2, ql, q2 # O one obtains

with i = 1,2. To solve (35) one has to first solve the auxiliau
biquadratic equation

h4–@2h2+~o=0 (36)

where h is a transverse wavenumber. Hence, there are four
transverse wavenumbers: ~ h. and t hb, such that

an externally applied constant magnetic field aligned with
the x axis, then Z = ~,i and K is given by (12) with Pll =1.
Hence,

where N5 = (K2~ – p~)/p ~.
Fi~ally, if the layer is a nonmagnetic uniaxial

~ = 1 and [14]

(42)

crystal, then

(43)

where 6 is the unit eigenvector of G corresponding to its
nonrepeated eigenvalue en; i.e., ~ is aligned with the optical
axis. When ~ lies on the yz plane, one has (Fig. 2)

t?= sin 6$ + cos 02 (44)
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Fig. 3. Grounded dielectric slab. The slab is a uniaxial crystal with
thickness t and a coplanar optical axis(Fig. 2).

and the anisotropy is of the polar type. In fact,

z = ELM + EYJ$+ EZZ22+ Eyz(ji2+ 2$) (45)

where, according to (43) and (44),

●YY
= ellsin2/3 + c1 cos20

eyZ=(ell -61)sin Ocos0. (46)

For this anisotropic case, da and ~~ in (38) correspond to
coupled ordinary and extraordinary field components of the
hybrid wave (which are uncoupled for O= O, rr /2). There-
fore, the subscripts s = a, b will be replaced with s = o, e,
Consequently one has, from (36) and (40),

[0=–$tan8 ~e=coto. (47)

IV. GROUNDED UNIAXIAL DIELECTRIC SLAB

In Section 11 multilayered closed anisotropic structures
were studied. As an extension of that theory, an open struc-
ture will be analyzed in this section.

When the eigenvalue equation (19) is applied to open
waveguides, the theory of Section 11 is no longer valid. In
fact, for open waveguides, the differential operator ~ is
defined over an infinite (or semi-infinite) interval and has a
discrete spectrum as well as a continuous spectrum.

In this section, the open waveguide depicted in Fig. 3 will
be analyzed. It is a conductor-backed, x-cut, nonmagnetic
uniaxial crystal with a coplanar optical axis (polar configura-
tion—Fig. 2). The semi-infinite upper layer is the air; hence,
for t’< x’, =(x’) = ~. The discrete spectrum of this slab
waveguide has previously been analyzed by the authors [7],
although this was on the basis of a different method which is
unable to establish the orthogonality and completeness rela-
tions for the transverse eigenfunctions. The analysis pre-
sented in this section is useful since (i) it illustrates the
application of eigenequation (19) to an open waveguide;
(ii) the results concerning the discrete spectrum can be
compared with those obtained in [7] by a different approach;
(iii) a complete spectral representation including the discrete
and the continuous spectra is presented; and (iv) orthogonal-
ity and completeness relations are given.

The surface modes constitute the discrete spectrum of
~ and they also define its domain D(z) as the set of

41( X’=0) ‘% ’42(X’=0) ‘o (48)

owing to the perfectly conducting plate at x’= O (Fig. 3) and
where the continuity of functions (a)–(d) in Section II at
x‘ = t‘is observed; Cll is the vector space of square inte-
grable functions over [0, OC[,i.e., for O < x’< ~.

Then, according to (38) and (39), one should have, for the
hybrid surface modes (with eYz+ O),

41= ~.sin(h.x’) + ~.sin(h.x’)

42= Gh.~.cOs(h.X’) + <ehdecos(~ex’) (49)

if O < x’< t’ (XO =x. = O) and where h, and .&$(s = o,e) are
given in (47). If t’< x’, one should have

41= Bexp [- aa(x’ - t’)]

42= Cexp[- aa(x’ - t’)] (50)

with

~2 _
a— Ceff— 1. (51)

In order to satisfy the radiation condition, one must have
aa > O; i.e., the surface modes are slow modes (eeff > 1). One
should note that, taking (17) into consideration, the other
field components are easily derived according to (16): one
just has to make CXZ= e ~, ~XX= ~zz = 1, and ~Zy = (),
whereas CZY= .sYzand eZz are given in (46).

Imposing the continuity of (a)–(d) of Section II at x’= t’
and noting that (s = o, e),

one gets

[J.;.1’[21=0

(52)

(53)

with

Y,= ~,cos(h.~’) + CI. Sin(h,t’)

8,= elh$aacos(h,t’)– h~sin(h~t’). (54)

To obtain nontrivial solutions for (53), one has to ensure that

(eYo~e – ‘$OY.SO= 0. (55)

Hence, (55) is the modal equation for the surface modes of
the uniaxial dielectric slab in Fig. 3 when eyz + O.

Remarking that ~,, = c ~ r, / h:, where ~, are the coupling
coefficients introduced in [7], one can easily see that [7, eq.
(56]] is equivalent to (55).

The numerical solution of (55) shows some interesting
results. The variation of Cefi with O for the propagating
hybrid surface modes of the slab in Fig. 3 (the optical axis
orientation was defined in Fig. 2) with t= 0.15A is presented
in Fig. 4 for two different cases: (i) when the slab is a positive
uniaxial crystal with ell = 11.6 and c ~ = 9.4 (A curves, sap-
phire) there are two propagating modes; (ii) when the slab is
a negative uniaxial crystal with ●11= 3.40 and c ~ = 5.12 (1?
curves, pyrolitic boron nitride) there are only two propagat-
ing modes for O< (30(00 = 63.6°) since for 6> /30 the second
mode is at cutoff (eeti = 1 for d = O.) and only the fundamen-
tal mode is propagating. This last effect clearly reveals the
importance of taking into account the anisotropy in the
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Fig. 4. ●eff versus 0 (in degrees) for the propagating hybrid surface
modes of the slab in Fig. 3 with thickness t= O.15A and a coplanar
optical axis (Fig. 2). The zt curves correspond to sapphire (EII=ll.6,
● L =9.4). The B curves correspond topyrolitic boron nitride(~ =3.40,
61 =5.12).

analysis of this waveguide: any approximate analysis neglect-
ing the anisotropy could not predict this cutoff effect.

According to (50), @I(x’ = ~) = @z(x‘ = ~) = O for any sur-
face mode. Therefore, taking (48) into consideration, the
proof of the symmetry of ~ in Appendix I still holds for
surface modes. As a consequence, if On and Q. are any two
surface modes, the orthogonality relation (29) is still valid,
i.e.,

l-[m+lm(~’)fhn(x’)+ 1+-@2n(x’)42n(x’)~’=sm.(1
(56)

provided that a convenient normalization is chosen (Appen-
dix II).

The surface modes, which are the proper eigenfunctions of
~, do not constitute a complete spectral representation for
~: the~e are pseudosurface modes [12] which do not belong
to D(Y) but are, nevertheless, improper eigenfunctions of
2 [13].

The following discussion about the pseudosurface modes is
only concerned with the case in which ●YZ+ O. The trans-
verse wavenumbers will be denoted by a, (s = o, e) in the
slab and by p in the air. The expressions for m, are the same
as for h, and

pz = 1 – Ceff (57)

where p may take any positive value (continuous spectrum).
For O < p <1 one has O < e.fi <1, i.e., the pseudosurface
mode is propagating. For p >1 one has ~eti <0, i.e., the
pseudosurface mode is evanescent.

For a given pseudosurface mode, if O < x‘ < t‘,then

@l= A[sin(uOx’) + rsin(m.x’)]

42= A[QL COSGTOX9+ w~, COS@eXf)l (58)

where J,, (s = o, e) are the coupling coefficients with the

same expressions as $,. If f’< x’, then

@~=,~l~{cos[p(x’- t’)] +Asin[p(x’- )]}]}

42 =72 A{ COSIP(X’ - t’)] +Asin[p(x’ - t’)]} (59)

where ~ ~ and ~z have the same standing-wave behavior in
the air. In Appendix III expressions for coefficients ri

(i= 1,2), r, and A are presented.
In Appendix IV it is shown, by means of a perturbation

approach, that the following orthogonality relation is valid
for the pseudosurface modes:

/[O“ fh(x’3P)f#h(x’>P’)+ — I~L;x’)4JX’’P)42(X’’)’) dx’

= ~(p – p’). (60)

According to (60), coefficient A in (58) and (59) must be
properly normalized. Since ~(p + p’)= O, one obtains from
(60)

/ 9
(61)

Owing to the behavior of the surface modes at infinity, one
may conclude that the proof in Appendix I is still valid for a
pair of surface and pseudosurface modes. Therefore, if @.(x’)
is any surface mode corresponding to a proper eigenvalue
Ceffn>1 and @(x’, p) is any pseudosurface mode correspond-
ing to an improper eigenvalue ecff <1, one has

/[“m4,n(x’)4q(x’, p) + 1*42n(x’)42(x’, p) dx’= o.

(62)

If the electromagnetic field of a uniaxial dielectric slab is
characterized by @(x’)= [~l(x’), @Jx’)]r, then

@(.x’) = f a.@.(x’) +~ma(P)@(x’j P)dP (63)
~=1

where N is the total number of surface modes guided by the
structure. According to (56), (60), and (62), one also obtains
the following completeness relation from (63):

J-[~mC);(X’)+ 1 ~=1npYP)dP.+Oi(x’) C/X’= f a2+

(64)

Besides the theoretical interest of (63), this equation bears
another feature which justifies its usefulness. In fact, in a
building-block approach (e.g., in the analysis of abrupt dis-
continuities), it guarantees a rigorous description of the
electromagnetic ,field in each subregion in terms of a known
basis of two-vector transverse mode functions (discrete and
continuous). Therefore, the present analytical formulation
may be used.as a first step in a mode matching procedure for
the study of practical anisotropic wave-guiding structures.

One should finally note that the perturbation approach
followed in deriving (60) is applicable to structures other
than the slab waveguide of Fig. 3. In fact, this method can be
easily applied as long as the anisotropic region is confined to
a finite interval on x. For example, a uniaxial film with
isotropic substrate and superstrata can be analyzed by this
method.
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V. CONCLUSIONS

Closed layered waveguides with lossless anisotropic layers
in the polar configuration were analyzed through the unify-
ing concept of a real self-adjoint operator. Layers such as
magnetic crystals and gyrotropic media were considered.
Orthogonality and completeness relations for the two-vector
transverse eigenfunctions were derived. Special attention was
paid to homogeneous layers although the theory is applicable
to piecewise-continuous tensors z and F over a finite inter-
val (regular problems).

As an extension of the former theory to open waveguides,
a grounded uniaxial dielectric slab with a coplanar optical
axis was analyzed. For this singular problem, defined over a
semi-infinite interval, a complete spectral representation of
the real self-adjoint operator—including the discrete and the
continuous spectra—was presented. Finally, for regular
problems, orthogonality and completeness relations for the
two-vector eigenfunctions were also presented. This example
of an open layered anisotropic waveguide is especially impor-
tant if a building-block approach is used in the analysis of
uniaxial dielectric planar structures for millimeter wave cir-
cuits, Moreover, as already pointed out, the present analysis
can be easily applied to a class of multilayered waveguides
used in integrated optics. The study of step discontinuities in
these structures will be the subject of a forthcoming paper.

APPENDIX I
PROOF OF THE SYMMETRYOF ~

To prove the symmetry of ~, one has to prove that [13]

A=(~. u,v)–(u, ~.v)=O (Al)

for u, u e D(~). After canceling the identical terms, one
obtains

6
A=~I, (A2)

~=1

with

13=/d[u,dx(b2u2)+ b2u2axw1]dx’
o

1’=~d’[u’d(:dru2)-u2d(:du2)l&’‘A3)
The boundary conditions at x’= O,d’ are (i) U1= LII=

dxJ{2= dx,L12= O for an electric wall and (ii) Uz = U2= ~l,ul =
2ZIL)~= O for a magnetic wall. Then, using integration by parts
together with (i) and/or (ii), one obtains, for 1< i <6, li = O.
Hence, A = O (q.e.d.).

APPENDIX II

NORMALIZATION OF THE SURFACE MODES

For a positive (negative) uniaxial crystal, i.e., for El,> e ~

(e ~ > EII),one always hash?> O(h: > 0). However, if El,> c 1
(El > 6,1) there is a value t’= t: (t’= t:) for which h.= O
(he = O) and such that h:> O (h: > O) for t’< tj (t’ < t:) and
ha <O(h~ < O)for t’>t:(t’>t:).Moreover, if t’=t:(t’=t;)
then p, = O (pl = O) in (33). Therefore, for t’= t: (s = o, e),
(35)-(39) are no longer valid. For the sake of brevity, the
normalization of the surface modes for these particular cases
will be omitted. However, the determination of t:will be
briefly presented below.

For a positive uniaxial crystal, if t‘= t:,then ●.ff = ● ~ and

‘;=&arctan(-l=i‘A’)
One should note that, in this particular case, E,= O.

For a negative uniaxial crystal, if t’=t:, then Eeff =
EIIE~ /Ezz and t: is a solution of

‘$eyoa: - ~oyJ30 = o (A5)

where

y; = lim 3 =I+aat:
he+ohe

8j=hli:o~=~laa–h~t~. (A6)
e e

Coefficients A,, B, and C of (49) and (50) can be ex-
pressed in terms of A@ in the form

A,= U/l. B=bAO C= CAO. (A7)

From (53) one obtains a = – y,, \ ye, and, from the continuity

where

of+1and~2atx’= t’, ““’

b =sin(hOt’)+ asin(h,t’)

c = <OhOcos(hOt’) + a.fehecos(het’).

Taking into consideration (56), AO is given by

‘“’*

~=%+no+~2%

v = ~ cos(hOt’)sin(h~t’)
0

with (.s = o, e)

b2+c2

‘a= 2iYa

(A8)

(A9)

(A1O)
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APPENDIX 111
COEFFICIENTS OF THE PSEUDOSURFACE MODES

Following the same procedure as in Appendix II one
obtains for the coefficients in (58) and (59)

71= sin(uOt’) + rsin(~,f’)

72 = {Ouocos (mot’) + r<eue cos (~et’) (A12)

and

A = ~ [uocos(~ot’) + rue COS(Uet’)]. (A13)

After substituting into (52) h, and ~~ with u, and ~$(s = o, e),
respectively, one also has

,~~p [1. sin(~.t’) + r<esin(m.t’)]. (A14)A=–—

Hence, from (A13) and (A14), r maybe evaluated accord-
ing to the algebraic equation

g2r2 + glr + gO = o (A15)

with

gO=m~(O[sin2 (ffOt’)+ c1 cos2(uOt’)]

gl = (40 + JJ[a~sin(aOt’) sin(aet’)

+ Elaoue Cos(crot’) Cos(aet’)]

g2 = i.[m~ sin2 (at’) + ●lm~cos2 (met’)]. (A16)

As gOg2 and 10[, have the same sign and since ~O~e=
– e ~ /u~ <0 then r2 >0, i.e., r is always real. Hence,
according to (A12) and (A13), ~~, 72, and A are also real.

APPENDIX IV
ORTHOGONALITY RELATION FOR THE

PSEUDOSURFACE MODES

The orthogonality relation for the pseudosurface modes
may be derived following a perturbation approach similar to
the one presented by Sammut [10]. In fact, the operator
~ in Section IV may be split into

2’2a+2 (A17)

where ~ is a “small” perturbation of an operator ~.. For
the case u~der conside~ation~ it is appropriate to def;ne an
operator ~a equivalent to 4 for t’ < x’, i.e.,

(A18)

and hence

Z= If(t’ -x’)

where

{
1 for x’< t’H(t’– x’)= fj for t’< x’.

(A19)

(A20)

If ma is an improper eigenfunction of ~a, then

(2a-,effq@a=o (A21)

whereas, according to (19),

for an improper eigenfunction of ~. From (A17), (A21), and
(A22) one may write [10], [13]

and

(@(x’, p), %.o(x’, p’)) = (Oa(x’, p), Xma(x’,p’)).

(A24)

However, according to (A18), the eigenfunctions of ~a
are uncoupled TE and TM modes in the half-space. There-
fore, as is well known, one may write, if an appropriate
normalization is made for both TE and TM modes,

(@a(x’, p), 7. Qa(x’, p’)) = a(p - /2’) (A25)

where p was introduced in (57).
From (A24) and (A25) the orthogonality relation (60) is

found.
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